Chapter 11: Evolutionary Programming

Computational Intelligence: Second Edition
Chapter 11: Evolutionary Programming

Contents

- Introduction
- Basic Evolutionary Programming
- Evolutionary Programming Operators
- Strategy Parameters
- Evolutionary Programming Implementations
Originated from the research of L.J. Fogel in 1962 on using simulated evolution to develop artificial intelligence.

Differs substantially from GA and GP, in that evolutionary programming (EP) emphasizes the development of behavioral models and not genetic models.

EP is derived from the simulation of adaptive behavior in evolution.

EP considers phenotypic evolution.

EP iteratively applies two evolutionary operators:
 - Variation through application of mutation operators
 - Selection
Chapter 11: Evolutionary Programming

Basic Evolutionary Programming Algorithm: Algorithm 11.1

$t = 0$, initialize strategy parameters;
Create and initialize the population, $C(0)$, of n_s individuals;
Evaluate the fitness, $f(x_i(t))$, of each individual;

while stopping condition(s) not true do
 for each individual, $x_i(t) \in C(t)$ do
 Create an offspring, $x'_i(t)$, by applying the mutation operator;
 Evaluate the fitness, $f(x'_i(t))$;
 Add $x'_i(t)$ to the set of offspring, $C'(t)$;
 end
 Select the new population, $C(t + 1)$, from $C(t) \cup C'(t)$;
 $t = t + 1$;
end
Basic Components

- The main components of an EP:
 - Initialization
 - Evaluation
 - Fitness function measures the “behavioral error” of an individual with respect to the environment of that individual
 - provides an absolute fitness measure of how well the problem is solved
 - Survival in EP is usually based on a relative fitness measure
 - A score is computed to quantify how well an individual compares with a randomly selected group of competing individuals
 - Individuals that survive to the next generation are selected based on this relative fitness
 - The search process in EP is therefore driven by a relative fitness measure, and not an absolute fitness measure
Basic Components (cont)

- The main components of an EP (cont):
 - Mutation as the only source of variation
 - Selection
 - Main purpose to select new population
 - A competitive process where parents and offspring compete to survive
 - Behaviors of individuals are influenced by strategy parameters
Mutation Operators

- Mutation is the only means of introducing variation in an EP population
- In general, mutation is defined as

\[x'_{ij}(t) = x_{ij}(t) + \Delta x_{ij}(t) \]

\[x'_i(t) \] is the offspring and \(\Delta x_i(t) \) is the mutational step size
- Mutational step size:
 - Noise sampled from some probability distribution
 - Deviation of noise is determined by a strategy parameter, \(\sigma_{ij} \)
 - Generally, the step size is calculated as

\[\Delta x_{ij}(t) = \Phi(\sigma_{ij}(t))\eta_{ij}(t) \]

\(\Phi : \mathbb{R} \rightarrow \mathbb{R} \) scales the contribution of the noise
Based on the characteristics of the scaling function, Φ, the following categories of EP algorithms:

- **non-adaptive** EP, in which case $\Phi(\sigma) = \sigma$. In other words, the deviations in step sizes remain static.
- **dynamic** EP, where the deviations in step sizes change over time using some deterministic function, Φ, usually a function of the fitness of individuals.
- **self-adaptive** EP, in which case deviations in step sizes change dynamically. The best values for σ_{ij} are learned in parallel with the decision variables, x_{ij}.

Strategy Parameters

- The deviations, σ_{ij}, are referred to as strategy parameters.
- Each individual has its own strategy parameters.
- An individual is represented as the tuple,

$$\chi_i(t) = (x_i(t), \sigma_i(t))$$

- Correlation coefficients between components of the individual have also been used as strategy parameters.
Mutation Distributions: Uniform

\[\eta_{ij}(t) \sim U(x_{\min,j}, x_{\max,j}) \]

- \(x_{\min} \) and \(x_{\max} \) provide lower and upper bounds for the values of \(\eta_{ij} \)
- Note that \(E[\eta_{ij}] = 0 \) to prevent any bias induced by the noise
- Alternative uniform mutation:

\[\Delta x_{ij}(t) = U(0, 1)(\hat{y}_j(t) - x_{ij}(t)) \]

directing all individuals to make random movements towards the best individual
The Gaussian density function:

\[f_G(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-x^2/(2\sigma^2)} \]

where \(\sigma \) is the deviation of the distribution.
Mutation Distributions: Cauchy

\[\eta_{ij}(t) \sim C(0, \nu) \]

- \(\nu \) is the scale parameter
- Cauchy density function centered at the origin
 \[f_C(x) = \frac{1}{\pi} \frac{\nu}{\nu + x^2} \]
 for \(\nu > 0 \)
- Distribution function
 \[F_C(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x}{\nu}\right) \]
- Cauchy distribution has wider tails than the Gaussian distribution, producing more, larger mutations
Chapter 11: Evolutionary Programming

Mutation Distributions: Lévy

\[\eta_{ij}(t) \sim L(\nu) \]

- Lévy probability function, centered around the origin
 \[F_{L,\nu,\gamma}(x) = \frac{1}{\pi} \int_0^\infty e^{-\gamma q^\nu} \cos(qx)dq \]

- \(\gamma > 0 \) is the scaling factor
- \(0 < \nu < 2 \) controls the shape of the distribution
- If \(\nu = 1 \), the Cauchy distribution is obtained
- If \(\nu = 2 \), the Gaussian distribution is obtained
- For \(|x| >> 1 \), the Lévy density function can be approximated by
 \[f_L(x) \propto x^{-(\nu+1)} \]
Mutation Distributions: Exponential

\[\eta_{ij}(t) \sim E(0, \xi) \]

- Density function of the double exponential probability distribution

\[\eta_{ij}(t) \sim E(0, \xi) \]

- \(\xi > 0 \) controls the variance (which is equal to \(\frac{2}{\xi^2} \))

- Random numbers can be calculated as follows:

\[
x = \begin{cases}
\frac{1}{\xi} \ln(2y) & \text{if } y \leq 0.5 \\
-\frac{1}{\xi} \ln(2(1 - y)) & \text{if } y > 0.5
\end{cases}
\]

where \(y \sim U(0, 1) \).
Mutation Distributions: Chaos

\[\eta_{ij}(t) \sim R(0, 1) \]

- \(R(0, 1) \) represents a chaotic sequence within the space \((-1, 1)\)
- The chaotic sequence can be generated using
 \[x_{t+1} = \sin\left(\frac{2}{x_t}\right)x_t, \quad t = 0, 1, \ldots \]
Mutation Distributions: Combined

- Mean mutation operator (MMO)
 \[\eta_{ij}(t) = \eta_{N,ij}(t) + \eta_{C,ij}(t) \]
 where
 \[\eta_{N,ij} \sim N(0, 1) \]
 \[\eta_{C,ij} \sim C(0, 1) \]

 - Generates more very small and large mutations compared to the Gaussian distribution
 - Generates more very small and small mutations compared to the Cauchy distribution
 - Generally, produces larger mutations than the Gaussian distribution, and smaller mutations than the Cauchy distribution
Selection Operators

- The selection operator is used to create the new population
- New population is selected from parents and their offspring
- Competition to survive is based on a relative fitness measure
- EP notation:
 - μ indicates the number of parent individuals
 - λ indicates the number of offspring
- Selection consists of two steps:
 - Calculate score, or relative fitness
 - Select new population
Define $P(t) = C(t) \cup C'(t)$ to be the competition pool

Let $u_i(t) \in P(t), i = 1, \ldots, \mu + \lambda$ denote an individual in the competition pool

For each $u_i(t) \in P(t)$, randomly select a group of competitors, excluding $u_i(t) \in P(t)$

Calculate the score

$$s_i(t) = \sum_{l=1}^{nP} s_{il}(t)$$

where

$$s_{il}(t) = \begin{cases}
1 & \text{if } f(u_i(t)) < f(u_l(t)) \\
0 & \text{otherwise}
\end{cases}$$
Selection Operators: Select New Population

- **Elitism**: the best μ individuals from $P(t)$ are selected.
- **Tournament** selection: the best μ individuals are stochastically selected using tournament selection.
- **Proportional** selection: each individual is assigned a probability of being selected:
 \[p_s(u_i(t)) = \frac{s_i(t)}{\sum_{l=1}^{2\mu} s_l(t)} \]
 Use Roulette-wheel selection to select the μ survivors
- **Nonlinear ranking** selection: Individuals are sorted in ascending order of score and then ranked:
 \[p_s(u(2\mu-i)(t)) = \frac{i}{\sum_{l=1}^{2\mu} l} \]
 Use Roulette-wheel selection to select survivors
Selection Operators: Select New Population

- Direct competition between parent and offspring:
 - Create a number of offspring from the parent
 - Select the best offspring
 - The offspring, $x'_i(t)$, survives to the next generation if $f(x'_i(t)) < f(x_i(t))$ or if
 \[e^{-\frac{(f(x'_i(t))-f(x_i(t))}{\tau(t)}} > U(0, 1) \] (3)

where τ is the temperature coefficient, with
$\tau(t) = \gamma \tau(t-1), 0 < \gamma < 1$; otherwise the parent survives
- The offspring has a chance of surviving even if it has a worse fitness than the parent
- This reduces selection pressure and improves exploration
Introduction to Strategy Parameters

- Mutational step sizes are dependent on strategy parameters.
- Usually each component of each individual has its own strategy parameter.
- However, a single strategy parameter can also be associated with a single individual.
- A single strategy parameter limits degrees of freedom in addressing the exploration–exploitation trade-off.
Static Strategy Parameters

- Values of deviations are fixed, using a linear strategy parameter:
 \[\Phi(\sigma_{ij}(t)) = \sigma_{ij}(t) = \sigma_{ij} \]
 where \(\sigma_{ij} \) is a small value
- Offspring are created as
 \[x'_{ij}(t) = x_{ij}(t) + \Delta x_{ij}(t) \]
 with \(\Delta x_{ij}(t) = N_{ij}(0, \sigma_{ij}) \)
- A too small value for \(\sigma_{ij} \) limits exploration and slows down convergence
- A too large value for \(\sigma_{ij} \) limits exploitation and the ability to fine-tune a solution
Dynamic Strategy Parameters

- Having strategy parameters proportional to fitness

\[\sigma_{ij}(t) = \sigma_i(t) = \gamma f(x_i(t)) \]

\(\gamma \in (0, 1] \)

- Offspring is generated using

\[x'_{ij}(t) = x_{ij}(t) + N(0, \sigma_i(t)) \]
\[= x_{ij}(t) + \sigma_i(t)N(0, 1) \]

- Fitness proportional to error wrt best solution

\[\sigma_{ij}(t) = \sigma_i(t) = |f(\hat{y}) - f(x_i)| \]

\(\hat{y} \) is the most fit individual
Self-Adaptation

- Major issues with regards to strategy parameters:
 - Amount of mutational noise to be added
 - Severity of noise, i.e. step sizes
- Usually best practice wrt these issues is problem dependent
- A solution is to self-adapt strategy parameters during the search process
Self-Adaptation (cont)

- **Additive methods:**
 \[
 \sigma_{ij}(t + 1) = \sigma_{ij}(t) + \eta \sigma_{ij}(t) N_{ij}(0, 1)
 \]
 \(\eta\) is the learning rate
 - In the first application of this approach, \(\eta = 1/6\)
 - If \(\sigma_{ij}(t) \leq 0\), then \(\sigma_{ij}(t) = \gamma\), where \(\gamma\) is a small positive constant (typically, \(\gamma = 0.001\)) to ensure positive, non-zero deviations
 - An alternative:
 \[
 \sigma_{ij}(t + 1) = \sigma_{ij}(t) + \sqrt{f_\sigma(\sigma_{ij}(t))} N_{ij}(0, 1)
 \]
 where
 \[
 f_\sigma(a) = \begin{cases}
 a & \text{if } a > 0 \\
 \gamma & \text{if } a \leq 0
 \end{cases}
 \]
Self-Adaptation (cont)

- **Multiplicative methods:**
 \[\sigma_{ij}(t + 1) = \sigma(0)(\lambda_1 e^{-\lambda_2 \frac{t}{nt}} + \lambda_3) \]

 \(\lambda_1, \lambda_2\) and \(\lambda_3\) are control parameters

- **Lognormal methods:**
 \[\sigma_{ij}(t + 1) = \sigma_{ij}(t)e^{(\tau N_i(0,1)+\tau' N_{ij}(0,1))} \]

 where
 \[\tau' = \frac{1}{\sqrt{2\sqrt{n_x}}} \], \[\tau = \frac{1}{\sqrt{2n_x}} \]

- **Offspring is generated using**
 \[x_{ij}'(t) = x_{ij}(t) + \sigma_{ij}(t)N_{ij}(0,1) \]
Self-Adaptation (cont)

- Undesirable property of self-adaptation:
 - Stagnation due to strategy parameters converging too fast
 - Deviations becomes too small too fast, limiting exploration
 - Search then stagnates until strategy parameters grow sufficiently large due to random variation

- Solution:
 - Impose a lower bound on values of σ_{ij}
 - Use dynamic lower bounds

\[
\sigma_{\text{min}}(t + 1) = \sigma_{\text{min}}(t) \left(\frac{n_m(t)}{\xi} \right)
\]

$\sigma_{\text{min}}(t)$ is the lower bound at generation t

$\xi \in [0.25, 0.45]$ is the reference rate

$n_m(t)$ is the number of successful consecutive mutations
Classical Evolutionary Programming (CEP)

- EP with Gaussian mutation
- Uses lognormal self-adaptation
- Produces offspring using

\[x'_{ij}(t) = x_{ij}(t) + \sigma_{ij}(t)N_{ij}(0, 1) \]

- Elitism selection is used to select new population from parents and offspring
Fast Evolutionary Programming (FEP)

- Mutational noise is sampled from the Cauchy distribution with $\nu = 1$
- Uses lognormal self-adaptation
- Offspring is generated using
 \[x'_{ij}(t) = x_{ij}(t) + \sigma_{ij}(t)C_{ij}(0, 1) \]
- Elitism selection is used to select new population from parents and offspring
- The wider tails of the Cauchy distribution provide larger step sizes
- Therefore, faster convergence and better exploration
Improved FEP

- FEP showed that step sizes may be too large for proper exploitation
- CEP showed a better ability to fine-tune solutions
- The improved FEP:
 - For each parent, IFEP generates two offspring
 - One offspring is generated using Gaussian mutation, and the other using Cauchy mutation
 - The best offspring is chosen as the surviving offspring
Exponential Evolutionary Programming

- Uses the double exponential probability distribution to sample mutational noise
- Offspring are generated using
 \[x'_{ij}(t) = x_{ij}(t) + \sigma_{ij}(t) \frac{1}{\xi} E_{ij}(0, 1) \]

\(\sigma_{ij} \) is self-adapted
- The variance of the distribution is controlled by \(\xi \)
 - The smaller the value of \(\xi \), the greater the variance
 - Larger values of \(\xi \) result in smaller step sizes
 - To ensure initial exploration and later exploitation, \(\xi \) can be initialized to a small value that increases with time
Accelerated Evolutionary Programming

- Individuals are represented as
 \[\chi_i(t) = (x_i(t), \rho_i(t), a_i(t)) \]

 \(\rho_{ij} \in \{-1, 1\}, j = 1, \ldots, n_x \) gives the search direction

 \(a_i \) represents the age of the individual

- Age is used to force wider exploration if offspring are worse than their parents

- Offspring generation consists of two steps
 - Update age parameters and search directions
 \[
 a_i(t) = \begin{cases}
 1 & \text{if } f(x_i(t)) < f(x_i(t-1)) \\
 a_i(t-1) + 1 & \text{otherwise}
 \end{cases}
 \]
 \[
 \rho_{ij}(t) = \begin{cases}
 \text{sign}(x_{ij}(t) - x_{ij}(t-1)) & \text{if } f(x_i(t)) < f(x_i(t-1)) \\
 \rho_{ij}(t-1) & \text{otherwise}
 \end{cases}
 \]
Accelerated Evolutionary Programming (cont)

- Offspring generation (cont)
 - If the fitness does not improve, increase in age cause larger step sizes
 - If $a_i(t) = 1$
 \[
 \begin{align*}
 \sigma_i(t) &= \gamma_1 f(x_i(t)) \\
 x'_{ij}(t) &= x_{ij}(t) + \rho_{ij}(t)N(0, \sigma_i(t))
 \end{align*}
 \]
 - If $a_i(t) > 1$
 \[
 \begin{align*}
 \sigma_i(t) &= \gamma_2 f(x_i(t))a_i(t) \\
 x'_{ij}(t) &= x_{ij}(t) + N(0, \sigma_i(t))
 \end{align*}
 \]
 - Selection: offspring competes directly with its parent using absolute fitness
Momentum Evolutionary Programming

Offspring is generated as follows:

\[x_{ij}(t) = x_{ij}(t) + \eta \Delta x_{ij}(t) + \alpha \tilde{x}_{ij}(t) \]

where

\[\Delta x_{ij}(t) = (\hat{y}_j(t) - x_{ij}(t))|N_{ij}(0, 1)| \]
\[\tilde{x}_{ij}(t) = \eta \rho_i(t) \Delta x_{ij}(t - 1) + \alpha \tilde{x}_{ij}(t - 1) \]

with \(\eta > 0 \) the learning rate, \(\alpha > 0 \) the momentum rate, and

\[\rho_i(t) = \begin{cases} 1 & \text{if } f(x_i'(t - 1)) < f(x_i(t - 1)) \\ 0 & \text{otherwise} \end{cases} \]

(4)
Evolutionary Programming with Local Search

- To improve exploitation ability, by adding hill-climbing to generate offspring.
- While a better fitness can be obtained, hill-climbing is applied to each offspring:

\[x'_{ij}(t) = x'_{ij}(t) - \eta_i(t) \frac{\partial f}{\partial x_{ij}(t)} \]

- The learning rate is calculated using:

\[\eta_i(t) = \frac{\sum_{j=1}^{n_x} \frac{\partial f}{\partial x_{ij}(t)}}{\sum_{h=1}^{n_x} \sum_{j=1}^{n_x} \frac{\partial^2 f}{\partial x_{ih}(t) \partial x_{ij}(t)} \frac{\partial f}{\partial x_{ih}(t)} \frac{\partial f}{\partial x_{ij}(t)}} \]
Evolutionary Programming Hybrid with PSO

\[x_{ij}(t + 1) = x_{ij}(t) + \nu_{ij}(t) + \sigma_i N_{ij}(0, 1) \]

- Classical EP mutation operator is used
- Can use any other EP mutation operator